
Siderurgia Sfida della Decarbonizzazione

Prof. Ing. Carlo Mapelli

I principali cicli siderurgici

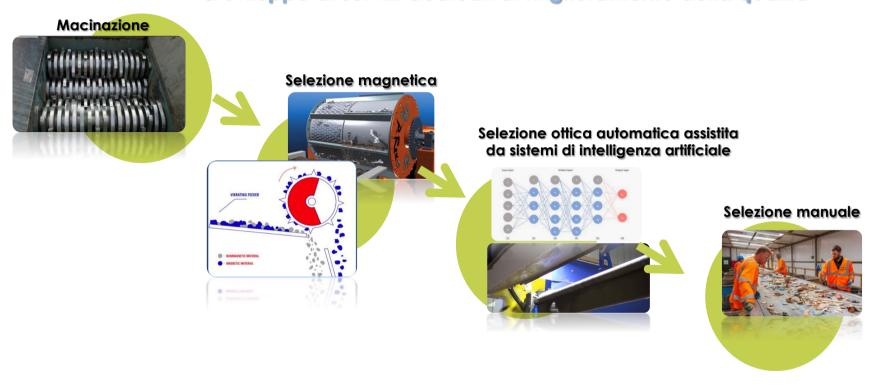
Da minerale e Coke $2500kg_{CO2}/t_{steel}$

Da rottame $150 kg_{CO2}/t_{steel}$ Spugna di ferro da minerale e $CH_4 850 kg_{CO2}/t_{steel}$

Minerali Ferrosi

Magnetite (Ferro magnetico)	Fe ₃ O ₄		
Maghemite	γ-Fe2O3		
Hematite (Ematite rossa o ferro oligisto)	α -Fe ₂ O ₃		
Limonite (Ematite bruna)	2Fe ₂ O ₃ .3H ₂ O		
Siderite (Ferro spatico)	FeCO ₃		
Pyrite	FeS ₂		

I più utilizzati sono Hematite e Maghemite


Rottami

Parametri fisico-chimici che governano la valorizzazione

Pezzatura Composizione chimica (in particolare concentrazione di Cu e Sn) Trascinamento di materiali inerti o di altri metalli Densità apparente

Selezione e preparazione dei rottami & sviluppo di servizi dedicati al miglioramento della qualità

Le categorie delle emissioni

Scopo 1

Emissioni dirette di gas clima-alteranti da parte degli impianti produttivi

Scopo 2

Emissioni di gas clima-alteranti associati alla catena logistica e di approvvigionamento dell'energia

Scopo 3

Emissioni di gas clima-alteranti coinvolte nella produzione ed approvvigionamento delle materie prime

I carboni

Antracite

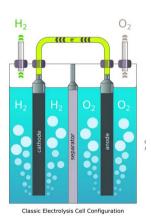
Composizione dei carboni

T:	Composizione (% in peso)*						Potere cal.
Tipo	C	H O N	Volatili Umidi	Umidità	Kcal/g		
Torba	45-60	3,5-6,8	20-45	0,8-3,0	45-75	70-90	4,1-5,3
Lignite	60-75	4,5-5,5	17-35	0,8-2,1	45-60	30-50	6,7-7,2
Litantrace	75-92	4,0-5,5	3,0-20	0,7-2,0	11-50	1,0-20	6,9-8,8
Antracite	92-95	2,9-4,0	2,0-3,0	0,5-2,0	3,5-10	1,5-3,5	8,6-8,9

8,6-8,9

Antracite

La cokefazione

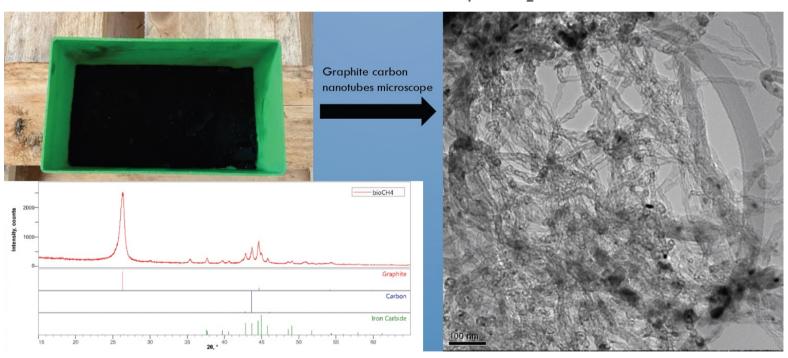

- ▶ 100 °C evaporazione dell'acqua igroscopica.
- ▶ 200 °C inizio della decomposizione del carbone.
- ▶ 250-340 °C inizio di sviluppo di gas combustibili e rammollimento.
- ▶290 °C decomposizione dei bitumi oleosi.
- ► 325-450 °C sviluppo del carbone primario.
- ▶ 350-600 °C il carbone è caratterizzato da una significativa pastosità.
- ▶ 600 °C termina lo sviluppo del catrame e il processo di solidificazione della massa pastosa con formazione del cosiddetto semi-coke.
- ▶ 1000-1100 °C il processo di cokizzazione si completa realizzando una tipica consistenza porosa.

La via dell'idrogeno?

H_2

La produzione del cosiddetto idrogeno verde è interessante dal punto di vista dell'eliminazione della CO₂ ma vi è una serie di ostacoli applicativi:

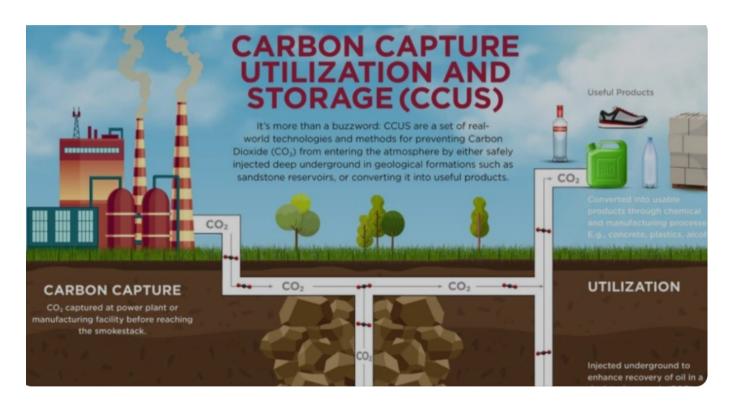
- sicurezza del trasporto (es. valvole e flange) e dello stoccaggio di grandi quantità;
- Il consumo di risorse locali di acqua dolce;
- consumi elettrici (5kWh/m³_{H2});
- elevati costi degli elettrolizzatori basati sulle leghe di Ni.

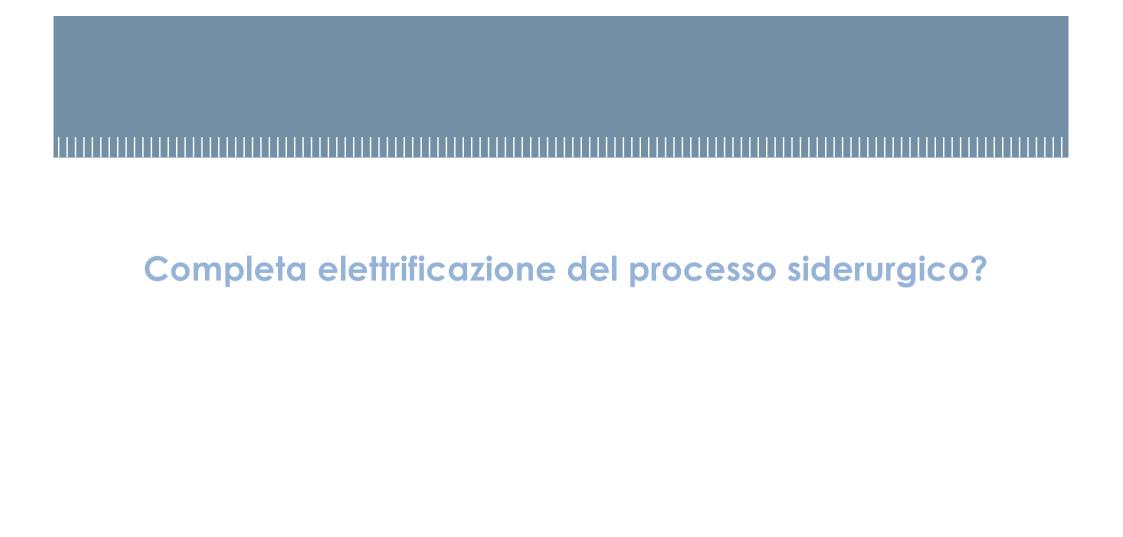


$$2H_2O \rightarrow 2H_2+O_2$$

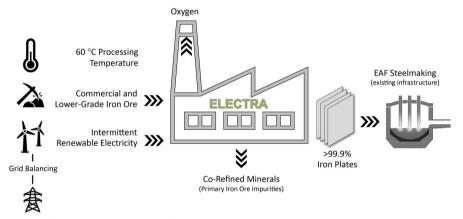
$$2Fe_2O_3+6H_2\rightarrow 4Fe+6H_2O$$

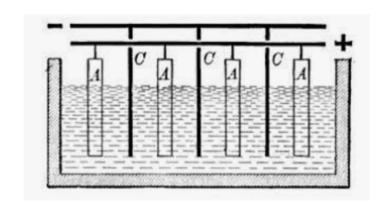
Pirolisi del gas naturale con ottenimento di due materie prime


 H_2 e C solido $CH_4 \rightarrow 2H_2 + C$

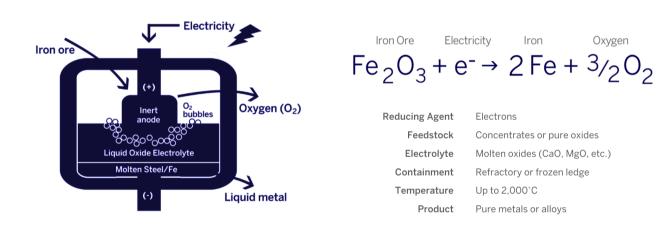


Su permesso di i-H₂


Cattura ed uso della CO₂ (CCUS)?


Cattura ed uso della CO₂ (CCUS)

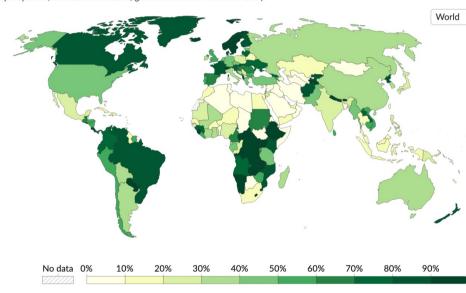
Riduzione Elettrochimica electra.earth



Low-Grade Iron Ore Opportunity

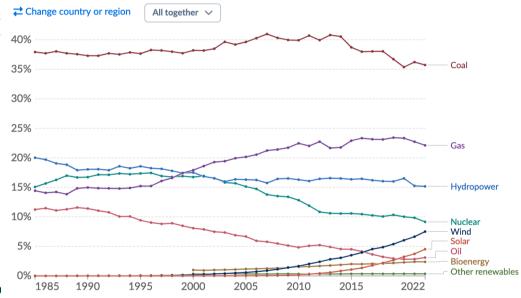
We've cracked the code of dissolving iron ore and removing impurities while retaining iron in aqueous solution, thereby unlocking immense opportunity to use low-grade ores. These ores are treated as waste today because of high levels of phosphorus, silica, and alumina impurities. Using low-grade ores decreases our operating costs and creates economic value.

Non ci sono informazioni circa il consumo elettrico ed il tipo e costo dei solventi utilizzati.


Smelting elettrico Boston Metals

Il consumo di energia elettrico accertato non è sostenibile 4MWh/t_acciaio

Share of electricity from low-carbon sources, 2022


Low-carbon electricity is the sum of electricity from nuclear and renewable sources (including solar, wind, hydropower, biomass and waste, geothermal and wave and tidal).

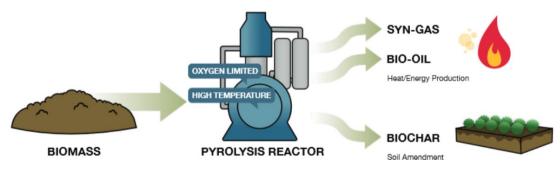
Source: Ember's Yearly Electricity Data; Ember's European Electricity Review; Energy Institute Statistical Review of World Energy OurWorldInData.org/low-carbon-electricity-by-country • CC BY

Share of electricity production by source, World

Source: Ember's Yearly Electricity Data; Ember's European Electricity Review; Energy Institute Statistical Review of World Energy OurWorldInData.org/energy • CC BY

Sfruttamento della biomassa (carbone da fonte biogenica)

Lo smelting mediante biocarbone



Biocarbone

